If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+27y=0
a = 7; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·7·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*7}=\frac{-54}{14} =-3+6/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*7}=\frac{0}{14} =0 $
| 4/7=q/91 | | 3/5=g/30 | | 4a+a–11=24 | | 2s+2s+5=13 | | 1^2(x-10)=7 | | 2x+3×-4=6 | | 7x+4=−31 | | 19a-17a+5=19 | | 8z−5z+6z=9 | | -4y+4+3y=-1 | | 9z-8z=18 | | 4x=112. | | 16m-14m=12 | | (2/6)/x=5/80 | | 0,75p=0.4p+100 | | 2(3y-7)=36 | | 3-x=5x | | .33/x=5/80 | | 3/4=u/68 | | 5.9a+12=59.2 | | -4x-2=-6^3 | | 8=2(k+-1 | | 3c-2c=13 | | 3x+10=5(x-50) | | (6x^2-x-4)+(2x^2+5x-5)=0 | | 1.25=1.0125^x | | |5c-8|=12 | | -(3-6r)=-18+4r | | 5.5+19.5x=7 | | 62x+12=50x | | 3(2x-5)(x+4)=0 | | (3x^2-4x-1)+(8x^2-x+6)=0 |